
Reduction

Reduction is an extremely important tool to “measure” the difficulty of a problem. We
will not go into technical details, such as Turing machine, NP, polynomial time certificate
and so on. We just show by some examples how to prove that a problem is NP-hard.

Independent Set (reduction from Clique)

Given a graph, Independent Set asks the maximum number of vertices so that no
two of them are connected. Clique asks the maximum number of vertices so that every
two of them are connected.

If I know already that Clique is an NP-hard problem, how could I show that In-
dependent Set is at least as hard? So we can do a reduction as follows. Given an
instance G = (V,E) of Clique problem, we create another instance G = (V,E), where
the latter graph is simply the complement of the former. It should be clear: there is a
clique of size k in the first graph if and only if there is an independent set in the second
graph.

Independent Set (reduction from 3SAT)

This time we want to show that Independent Set is at least as hard as 3SAT. Remem-
ber that in the latter problem, we are given a boolean formula φ, which takes the form of
conjuctive form of clauses of 3 literals: for instance (v1∨v2∨v5)∧ ((v11∨v4∨v7)∧· · · ...

The reduction is as follows. For each clause, we create a triangle, where each vertex
in a triangle representing a literal. We will also connect the triangles in the following
way. If vi1 represents a literal contained in clause i and vj2 represents a literal contained
in another difficult clause j, and the two literals are the opposite of each other, namely,
v and v, then we connect vi1 and vj2.

After we have constructed the graph G in this manner, we claim that the 3SAT
formula φ has a ”YES” solution if only if G has an independent set of size m (where m
is the number of clauses in φ). This follows from the fact that we can take at most one
vertex in each triangle (clause) and we never choose two literals that are the opposite of
each other.

Max Flow: Ford-Fulkerson

(You have learned about max flow in your L3 course. Here is a quick summary to refresh
your memory)

Let G = (V,E) be a directed graph where every edge e has an integer capacity
ce > 0. Two special nodes s, t ∈ V are called source and sink, all other nodes are
called internal. We suppose that no edge enters s or leaves t. A flow is a function f
on the edges such that: 0 ≤ f(e) ≤ ce holds for all edges e (capacity constraints), and
f+(v) = f−(v) holds for all internal nodes v (conservation constraints), where we define

1

f−(v) :=
∑

e=(u,v)∈E f(e) and f+(v) :=
∑

e=(v,u)∈E f(e). (As a menominic aid: f−(v)

is consumed by node v, and f+(v) is generated by node v.) The value of the flow f
is defined as val(f) := f+(s). The Maximum Flow problem is to compute a flow with
maximum value.

For any flow f in G (not necessarily maximum), we define the residual graph Gf as
follows. Gf has the same nodes as G. For every edge e of G with f(e) < ce, Gf has
the same edge with capacity re = ce − f(e), called a forward edge. The difference is
obviously the remaining capacity available on e. For every edge e of G with f(e) > 0, Gf

also has the opposite edge with capacity re = f(e), called a backward edge. By virtue
of backward edges we can “undo” any amount of flow up to f(e) on e by sending it back
in the opposite direction.

Now let P be any simple directed s− t path in Gf , and let b be the smallest residual
capacity of all edges in P . For every forward edge e in P , we may increase f(e) in G by
b, and for every backward edge e in P , we may decrease f(e) in G by b. It is not hard
to check that the resulting function f ′ on the edges is still a flow in G. We call f ′ an
augmented flow, obtained by these changes. Note that val(f ′) = val(f) + b > val(f).

Now the basic Ford-Fulkerson algorithm works as follows: Initially let f := 0. As
long as a directed s− t path in Gf exists, augment the flow f (as described above).

To prove that Ford-Fulkerson outputs a maximum flow, we must show: If no s − t
path in Gf exists, then f is a maximum flow.

The proof is done via another concept of independent interest: An s − t cut in
G = (V,E) is a partition of V into sets A,B with s ∈ A, t ∈ B. The capacity of a cut is
defined as c(A,B) :=

∑
e=(u,v):u∈A,v∈B ce.

For subsets S ⊂ V we define f+(S) :=
∑

e=(u,v):u∈S,v /∈S f(e) and f−(S) :=
∑

e=(u,v):u/∈S,v∈S f(e).

Remember that val(f) = f+(s)−f−(s) by definition. (Actually we have f−(s) = 0 if no
edge goes into s.) We can generalize this equation to any cut: val(f) =

∑
u∈A(f+(u)−

f−(u)), which follows easily from the conservation constraints. When we rewrite the last
expression for val(f) as a sum of flows on edges, then, for edges e with both nodes in
A, terms +f(e) and −f(e) cancel out in the sum. It remains val(f) = f+(A)− f−(A).
It follows val(f) ≤ f+(A) =

∑
e=(u,v):u∈A,v/∈A f(e) ≤

∑
e=(u,v):u∈A,v/∈A ce = c(A,B).

In words: The flow value val(f) is bounded by the capacity of any cut (which is also
intuitive).

Next we show that, for the flow f returned by Ford-Fulkerson, there exists a cut with
val(f) = c(A,B). This implies that the algorithm in fact computes a maximum flow.

Clearly, when the Ford-Fulkerson algorithm stops, no directed s−t path exists in Gf .
Now we specify a cut as desired: Let A be the set of nodes v such that some directed s−v
path is in Gf , and B = V \A. Since s ∈ A and t ∈ B, this is actually a cut. For every
edge (u, v) with u ∈ A, v ∈ B we have f(e) = ce (or v should be in A). For every edge
(u, v) with u ∈ B, v ∈ A we have f(e) = 0 (or u should be in A because of the backward
edge (v, u) in Gf). Altogether we obtain val(f) = f+(A) − f−(A) = f+(A) = c(A,B).
In words: The flow value val(f) equals the capacity of a minimum cut (which is still
intuitive).

The last statement is the famous Max-Flow Min-Cut Theorem. It should be noted

2

that in case all capacities ce ∈ Z>0, then there is a integral max flow, i.e., all f(e) are
integers. (Why?) This is a useful property for some applications.

We remark that by original Ford-Fulkerson algorithm may not stop. But in case that
all edge capacities are integers, it terminates in O(m2C) time, where C = maxe∈E ce.
One needs O(m) time to build the residula graph and find a s− t path in it. How many
augmentions do we need? As each time we augment at least 1 unit and the flow value
cannot be larger than O(mC) (why?) We have the claimed complexity.

Max Flow: Edmond-Karp

The Edmonds-Karp algorithm is motivated by that ”pathological” example that we have
seen in class. Its idea is very simple: augment along the shortest path in the residual
network Gf .

In the following, we write P1, P2, · · · as the sequence of paths that we have found
in the residual network. Let fi denotes the current flow after we have augmented (in
sequence) P1, · · · , Pi−1. Also let E(Pi) denote the set of edges used by Pi. The following
lemma is crucial: it implies that the paths Pi grow in length monotonically.

Lemma 1. In Edmonds-Karp algorithm, let P1, · · · be the sequence of augmenting paths.
Then

1. |E(Pk)| ≤ |E(Pk+1)|.

2. If Pk and Pl share a pair of reverse edges and k < l, then |E(Pk)|+ 2 ≤ |E(Pl)|.

Proof. For (1), we define a graph H as the union of Pk and Pk+1, after we have removed
the pairs of reverse edges of these two paths. Here we observe that every s-t path in H
must also be an augmenting path in Gfk : if an edge is in Pk, it certainly is in Gfk . But
how about an edge in Pk+1? Couldn’t it be a new edge absent in Gfk? But this cannot
happen. If it is a new edge, it must have popped up as the reverse edge of some edge
along Pk. But such a pair of reverse edges are removed from H, by our construction.

Let us add two directed edges from t to s in H. Observe that H is now Eulerian
(every vertex has the same outgoing and incoming degrees). So there are two disjoint
circuits containing the two added directed edges from t to s, implying that we have two
directed s-t paths Q1 and Q2 in H. Remember that Edmonds-Karp algorithm chooses
the shortest path. So these two paths cannot be shorter than Pk. As a consequence, in
Gfk ,

2|E(Pk)| ≤ |E(Q1)|+ |E(Q2)| ≤ |E(H)| ≤ |E(Pk)|+ |E(Pk+1)|,

hence the proof of (1).
For (2), we will prove the following claim (which easily implies the proof thanks to

(1)).

Claim 1. Suppose that before Pl, Pk is the latest path that uses a reverse edge of Pl (in
other words, none of Pk+1, · · ·Pl−1 uses a reverse edge of Pl). Then |E(Pk)|+2 ≤ E(Pl).

3

The proof of the claim is very similar to the above proof of (1). Let H be the union
of Pk and Pl after we have removed their pairs of reverse edges. Again we make the
observation that every s-t path in H is also a path in G(fk) (this is a bit more subtle
than the last time: try to convince yourself). Then again we have two paths Q1 and Q2

in H and we derive

2|E(Pk)| ≤ |E(Q1)|+ |E(Q2)| ≤ |E(H)| ≤ |E(Pk)|+ |E(Pk+1)| − 2,

where the extra -2 term comes from the fact Pk and Pl share at least a pair of reverse
edges.

We can now prove the main theorem.

Theorem 1. Edmonds-Karp algorithm augments O(nm) times, implying a total running
time of O(nm2).

Proof. Remember every augmenting path is associated with a bottleneck edge. How
many times an edge in the residual network can be a bottleneck? Suppose that e is
the bottleneck of augmenting paths Pi1 , Pi2 , · · · . Here we observe that after path Pik is
augmented, the edge e disappears. Then how could it re-appear to be used by Pik+1

?
There must exist another path Pj , where ik < j < ik+1 such that Pj augments along the
reverse edge of e. By Lemma 1(2), we then know that

|E(Pik)|+ 4 ≤ |E(Pj)|+ 2 ≤ |E(Pik+1
)|.

Therefore, the sequence of paths Pi1 , Pi2 , · · · grow their lengths by least 4 each time,
implying that an edge can be bottleneck at most O(n) times. Now since the number of
possible edges in the residual network is 2m, we have the proof.

4

